GIGA+
Scalable file system directories

Swapnil Patil and Garth Gibson

{firstname.lastname} @ cs.cmu.edu

Carnegie Mellon University

HECFSIO Workshop 2010

- pdsi

Demand for massive directories

* New applications that use file systems as a fast,
lightweight “database”

— All clients creating large number of files in a single
directory at high speeds!rcs08!

— Examples: N-to-N checkpoints, science apps

* Highly concurrent execution of data-intensive apps

— By 2020, Exascale-era clusters expected to have up to
one billion coresldarpa0é-study]

— Even simple workloads can stress the metadata service

State of file systems today

* Provide high parallelism on the data path, not
much on the metadata path
— Either store directories on one metadata server
— Or avoid many small files using new semantics!¢009/eFs]
— Distributed directories: GPFS[>chmuck02] gpd Lustreltustre!

* Goal: Highly parallel directory indexing (GIGA+)

— Push scalability limits while maintaining UNIX FS and
POSIX-like semantics

Challenges in distributed indices

* Setup: Directory partitioned, mapped to servers

 How do servers expand partitions?

— Serialized order of splitting!-™"%! or synchronized
splitting using lockslSchmuck02]

— GIGA+ avoids both serialization and synchronization

 How do clients learn about new partitions?
— Servers ensure client’s mapping consistency!>chmuck0?]

— GIGA+ tolerates inconsistent mapping state at clients
* Note: Apps see strong data consistency

GIGA+ illustration

Total hash range (o,1] is split over different partitions P,

0.25 0.5 0.75 1

e Hash-based partitioning

* Design decision: incremental growth

— Keeps small directories on a single server
—99.9% of directories less that 8K entries/P2yal08]

G I GA+ iIIUStratiOn (contd.)

Total hash range (o,1] is split over different partitions P,

. 0725 . 0.5 0.75 . 1
TO """"""""""""""""""" DT l """"""""" AR LA LTI
1
Po(oll] E
|

P, (0-5%-75] p3(0-75:,1]

* Repeated splitting, proportional to the size

— Avoids one-time full width splitting; may lead to
many small-sized partitions

G I GA+ iIIUStratiOn (contd.)

Total hash range (o,1] is split over different partitions P,

time 0725 . 075 . 0775 . 1.
TO '''''''''''''''''''''''' DT l """"""""" STrrrrrrrrrrrrTrrnrrnrmnees LTI e
1
Po(oll] :
1 :
d :
Tl .. v ﬂ

| . | .
: : : : ! : : :
T ; \{J*\/
3 : : : : : : :
épo(o,o..25] p2(0-2§,0-5] P, p5+ : : :

;*(0.5,0.625]5+(o.625,o.75§]

 Servers split independently, without any synchronization
— Split only until all servers have appropriate # of partitions

G I GA"‘ i"UStratiOn (contd.)

Logical view of Physical view (mapping & partitions) on each server

the entire index server S, - server$, server S,
® mapping mapping . mapping
Po 5o ° Po 5o Po 5o
PR Po S Py PoSo .| Po S
P1151 P15
LA == = AP
Py 53 |2% i ppsy |02
.................................. "--------------------\
I Po 5 p - Po 5 p o 2o [p I
1 p, 5 "o p s |T2 p g |F2 :
i
J 1 P3 So [7F3 1 P3S4 Ps S, s 1
V. P2 5 Ps | S, '

* Servers keep partlal mapping view of the mdex
— View includes a partition and a “history” of its splits

Experimental evaluation

client(s) server(s)

- library ~

LUser || GIGA+ © W GIGA+ indexing server
PP indexing [g (hash partitions)

User-space

8 FUSE (FS directories)
module LocalFS | | ClusterFS
network \1,

disk j

Cluster file system
(directories are stored on
separate servers from
the actual data)

« Benchmark: Modified mdtest (http://sourceforge.net/projects/mdtest/)

— Concurrent create workload that creates files proportional to the # of servers
(400K file on 1 server, 800K on 2, and so on ...)

* Setup: 64 nodes, dual quad-cores with 16GB RAM with a 10 GigE network
— Each machine has SATA disks running a local file system
— 8 client threads generating work per server

Experimental evaluation

throughput All the servers
A are in use
|

i
I
i
1
i
1

v

10

Experimental evaluation

Full evaluation @
the poster session

throughput All the servers
A are in use
|
® | HowdoesGIGA+ 1 Understanding local FS
G, index scale? 1
v

Measurements

behavior in steady-state

Scale and performance

Scale-out
Load-balancing Effect of layering on
Client-side cost different local FSs 5 time

11

Single-node baseline performance

mmm GIGA+ (library interface)
GIGA+ (VFS/FUSE interface)

20,000- 22 e Es * VFS/FUSE sends three
Em NFS
p——— RPC requests for every
S5 ReiserFS 7 file create

15,000

* On par with the real

Average file creates per second (in one directory)

10,0007 distributed FSs
5,000 * Local FS configurations
— Client threads create files
Z, in a local directory

GIGA+ Networked FS Local FS

12

Scaling FS directories

Aggregate Throughput
(File creates/second)

fffffffffff GIGA+ over tmpfs‘
| GIGA+ over ReiserFS ««-=---

I I I I
2 4 8 16
Cluster size (# of servers)

~98K creates/second

Sub-linear scaling due
to the implementation

decisions of localFS
(ReiserFS on disk)

Incremental scale-out performance

250,000
5 200,000
150,000
100,000

50,000

25,000
20,000

15,000

Instantaneous Throughput
(Number of files created every secon

5,000

””’”r”””’r”””’r”””’T'”””T”””””’””]-‘\-I- -------

10,000 ==

i 32 servers
S S A U S
’ |
L !
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,‘i!“‘! ll
S5 16 servers
1
. 8 servers
| | | I
,,, f se”rve’r’s
"""" ;' ,.;,-.'- T NP P o SIS T LTSGR
,,,,,, i< 2servers
S S e
fffff ”'._1.51server
|

1 2 3 4 5 6 7 8
Running Time (seconds)

* Linear scaling after
distributing over all
servers

 Throughput drops
during incremental
splitting

Load-balancing effectiveness

* Find load variance for a server |L-L
— Average (95% Cl) over all servers L

-—
o
o

Avg. load variance (%

(0]
o

(o2}
o

D
o

N
o

o

1 partition/server

T 16 partitions/server

32 partitions/server

0 4 8 12 16 20 24 28 32
Cluster size (# of servers)

avg

avg

* Load balanced for pow(2)

* For other cases more partitions
per server reduces variance

Avg. load variance (%)

Load-balancing effectiveness

(a) GIGA+ indexing (b) Consistent hashing
100 p--ooo oo 100 -
L 80 -
1) 1 partition/server =:=1=:=
604 60 4 ./ 16 partitions/server ««=x:+:
i K 32 partitions/server
4904 T 40 128 partitions/server ————
1 i E{‘ i"i.'{“' 1 .) .o 1024 partitions/server ———
U AN \,% """"""""] 20 1 I ¥TF
R e B o B A 0
0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32
Cluster size (# of servers) Cluster size (# of servers)

* Needs two orders of magnitude less partitions
on each server than consistent hashing

Low cost of weak mapping at clients

(a) Total client re-routing overhead

o1 5
-ch) -O : P @ @
SRS _ R S
- o '
39 o014 L —
et q.) E :.“‘ :,' -“ : .’._._._‘.....
— . o=

c . S e
o QP _ Vet
SO : 5/'
== o00014 L~
T 5 ; A
= k4
o5 ¢ 1 partition/ .
< é partition/server
o 16 partitions/server ---=---

00001 ! 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1

0 4 8 12 16 20 24 28 32
Cluster size (# of servers)

* Negligible rerouting overhead at the clients

Summary of GIGA+

* Push the limits of scalability for FS directories

— store billions of files per directory over hundreds of servers
— sustain 100,000s of mutations/second

* Exploit opportunities to parallelize indexing
— Eliminate system-wide synchronization and serialization
— Avoid strong consistency (for everything other than data)

 Maintain UNIX FS and POSIX-like semantics

— Complement existing cluster FSs and run unmodified apps

